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smfsb-package Stochastic Modelling for Systems Biology

Description

This package contains code and data for modelling and simulation of stochastic kinetic biochemical
network models. It contains the code and data associated with the second and third editions of the
book Stochastic Modelling for Systems Biology, published by Chapman & Hall/CRC Press.

Author(s)

Maintainer: Darren Wilkinson <darrenjwilkinson@btinternet.com>
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References

See https://darrenjw.github.io/work/smfsb/ or https://github.com/darrenjw/smfsb for
further details.

abcRun Run a set of simulations initialised with parameters sampled from a
given prior distribution, and compute statistics required for an ABC
analaysis

Description

Run a set of simulations initialised with parameters sampled from a given prior distribution, and
compute statistics required for an ABC analaysis. Typically used to calculate "distances" of simu-
lated synthetic data from observed data.

Usage

abcRun(n, rprior, rdist)

Arguments

n An integer representing the number of simulations to run.

rprior A function without arguments generating a single parameter (vector) from prior
distribution.

rdist A function taking a parameter (vector) as argument and returning the required
statistic of interest. This will typically be computed by first using the param-
eter to run a forward model, then computing required summary statistics, then
computing a distance. See the example for details.

Value

A list with elements ’param’ and ’dist’. These will be returned as matrices or vectors depending on
whether the parameters and distances are scalars or vectors.

See Also

pfMLLik, StepGillespie, abcSmc, simTs, stepLVc

Examples

data(LVdata)
rprior <- function() { exp(c(runif(1, -3, 3),runif(1,-8,-2),runif(1,-4,2))) }
rmodel <- function(th) { simTs(c(50,100), 0, 30, 2, stepLVc, th) }
sumStats <- identity
ssd = sumStats(LVperfect)
distance <- function(s) {

diff = s - ssd

https://darrenjw.github.io/work/smfsb/
https://github.com/darrenjw/smfsb
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sqrt(sum(diff*diff))
}
rdist <- function(th) { distance(sumStats(rmodel(th))) }
out = abcRun(10000, rprior, rdist)
q=quantile(out$dist, c(0.01, 0.05, 0.1))
print(q)
accepted = out$param[out$dist < q[1],]
print(summary(accepted))
print(summary(log(accepted)))

abcSmc Run an ABC-SMC algorithm for infering the parameters of a forward
model

Description

Run an ABC-SMC algorithm for infering the parameters of a forward model. This sequential Monte
Carlo algorithm often performs better than simple rejection-ABC in practice.

Usage

abcSmc(N, rprior, dprior, rdist, rperturb, dperturb, factor=10,
steps=15, verb=FALSE)

Arguments

N An integer representing the number of simulations to pass on at each stage of the
SMC algorithm. Note that the TOTAL number of forward simulations required
by the algorithm will be (roughly) ’N*steps*factor’.

rprior A function without arguments generating a single parameter (vector) from prior
distribution.

dprior A function with required argument a model parameter (such as generated by
’rprior’) and optional parameter ’log’ returing the (log) density of the parameter
under the prior distribution.

rdist A function taking a parameter (vector) as argument and returning a scalar "dis-
tance" representing a measure of how good the chosen parameter is. This will
typically be computed by first using the parameter to run a forward model, then
computing required summary statistics, then computing a distance. See the ex-
ample for details.

rperturb A function which takes a parameter as its argument and returns a perturbed
parameter from an appropriate kernel.

dperturb A function which takes a pair of parameters as its first two arguments (new first
and old second), and has an optional argument ’log’ for whether to return the
log of the density associated with this perturbation kernel.
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factor At each step of the algorithm, ’N*factor’ proposals are generated and the best
’N’ of these are weighted and passed on to the next stage. Note that the effective
sample size of the parameters passed on to the next step may be (much) smaller
than ’N’, since some of the particles may be assigned small (or zero) weight.

steps The number of steps of the ABC-SMC algorithm. Typically, somewhere be-
tween 5 and 100 steps seems to be used in practice.

verb Boolean indicating whether some progress should be printed to the console (the
number of steps remaining).

Value

A matrix (or vector) with rows (or elements) representing samples from the approximate posterior
distribution.

See Also

pfMLLik, StepGillespie, abcRun, simTs, stepLVc

Examples

data(LVdata)
rprior <- function() { c(runif(1, -3, 3), runif(1, -8, -2), runif(1, -4, 2)) }
dprior <- function(x, ...) { dunif(x[1], -3, 3, ...) +

dunif(x[2], -8, -2, ...) + dunif(x[3], -4, 2, ...) }
rmodel <- function(th) { simTs(c(50,100), 0, 30, 2, stepLVc, exp(th)) }
rperturb <- function(th){th + rnorm(3, 0, 0.5)}
dperturb <- function(thNew, thOld, ...){sum(dnorm(thNew, thOld, 0.5, ...))}
sumStats <- identity
ssd = sumStats(LVperfect)
distance <- function(s) {

diff = s - ssd
sqrt(sum(diff*diff))

}
rdist <- function(th) { distance(sumStats(rmodel(th))) }
out = abcSmc(5000, rprior, dprior, rdist, rperturb,

dperturb, verb=TRUE, steps=6, factor=5)
print(summary(out))

as.timedData Convert a time series object to a timed data matrix

Description

This function converts a time series object to a timed data matrix, similar to that produced by
simTimes. The main purpose is for passing data to the function pfMLLik, which expects data
encoded in this format.
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Usage

as.timedData(timeseries)

Arguments

timeseries An R timeseries object, such as produced by the functions ts or simTs.

Value

An R matrix object with row names corresponding to observation times, similar to that produced by
simTimes.

See Also

simTs, ts, simTimes, pfMLLik

Examples

truth=simTs(c(x1=50,x2=100),0,20,2,stepLVc)
simData=truth+rnorm(prod(dim(truth)),0,5)
timedData=as.timedData(simData)
print(timedData)

discretise Discretise output from a discrete event simulation algorithm

Description

This function discretise output from a discrete event simulation algorithm such as gillespie onto
a regular time grid, and returns the results as an R ts object.

Usage

discretise(out, dt=1, start=0)

Arguments

out A list containing discrete event simulation output in the form of that produced
by gillespie.

dt The time step required for the output of the discretisation process. Defaults to
one time unit.

start The start time for the output. Defaults to zero.

Value

An R ts object containing the discretised output.
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See Also

simpleEuler, rdiff, gillespie, gillespied, ts

Examples

# load LV model
data(spnModels)
# simulate a realisation of the process and plot it
out = gillespie(LV,10000)
op=par(mfrow=c(2,2))
plot(stepfun(out$t,out$x[,1]),pch="")
plot(stepfun(out$t,out$x[,2]),pch="")
plot(out$x,type="l")

# use the "discretise" function to map it to an R "ts" object
plot(discretise(out,dt=0.01),plot.type="single",lty=c(1,2))
par(op)

gillespie Simulate a sample path from a stochastic kinetic model described by a
stochastic Petri net

Description

This function simulates a single realisation from a discrete stochastic kinetic model described by a
stochastic Petri net (SPN).

Usage

gillespie(N, n, ...)

Arguments

N An R list with named components representing a stochastic Petri net (SPN).
Should contain N$M, a vector representing the initial marking of the net, N$Pre, a
matrix representing the LHS stoichiometries, N$Post, a matrix representing the
RHS stoichiometries, and N$h, a function representing the rates of the reaction
processes. N$h should have first argument x, a vector representing the current
state of the system, and second argument t, a scalar representing the current
simulation time (in the typical time-homogeneous case, N$h will ignore this ar-
gument). N$h may posses additional arguments, representing reaction rates, for
example.

n An integer representing the number of events to simulate, excluding the initial
state, N$M.

... Additional arguments (such as reactions rates) will be passed into the function
N$h.
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Value

A list with first component t, a vector of length n containing event times and second component x,
a matrix with n+1 rows containing the state of the system. The ith row of x contains the state of the
system prior to the ith event.

See Also

simpleEuler, rdiff, discretise, gillespied, StepGillespie

Examples

# load the LV model
data(spnModels)
# simulate a realisation of the process and plot it
out = gillespie(LV,10000)
op = par(mfrow=c(2,2))
plot(stepfun(out$t,out$x[,1]),pch="")
plot(stepfun(out$t,out$x[,2]),pch="")
plot(out$x,type="l")

# use the "discretise" function to map it to an R "ts" object
plot(discretise(out,dt=0.01),plot.type="single",lty=c(1,2))
par(op)

gillespied Simulate a sample path from a stochastic kinetic model described by a
stochastic Petri net

Description

This function simulates a single realisation from a discrete stochastic kinetic model described by a
stochastic Petri net and discretises the output onto a regular time grid.

Usage

gillespied(N, T=100, dt=1, ...)

Arguments

N An R list with named components representing a stochastic Petri net (SPN).
Should contain N$M, a vector representing the initial marking of the net, N$Pre, a
matrix representing the LHS stoichiometries, N$Post, a matrix representing the
RHS stoichiometries, and N$h, a function representing the rates of the reaction
processes. N$h should have first argument x, a vector representing the current
state of the system, and second argument t, a scalar representing the current
simulation time (in the typical time-homogeneous case, N$h will ignore this ar-
gument). N$h may posses additional arguments, representing reaction rates, for
example.
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T The required length of simulation time. Defaults to 100 time units.

dt The grid size for the output. Note that this parameter simply determines the vol-
ume of output. It has no bearing on the correctness of the simulation algorithm.
Defaults to one time unit.

... Additional arguments will be passed into the function N$h.

Value

An R ts object containing the simulated realisation of the process.

See Also

simpleEuler, rdiff, discretise, gillespie, StepGillespie

Examples

# load LV model
data(spnModels)
# simulate and plot a realisation
plot(gillespied(LV,T=100,dt=0.01))

imdeath Simulate a sample path from the homogeneous immigration-death pro-
cess

Description

This function simulates a single realisation from a time-homogeneous immigration-death process.

Usage

imdeath(n=20,x0=0,lambda=1,mu=0.1)

Arguments

n The number of states to be sampled from the process, not including the initial
state, x0

x0 The initial state of the process, which defaults to zero.

lambda The rate at which new individual immigrate into the population. Defaults to 1.

mu The rate at which individuals within the population die, independently of all
other individuals. Defaults to 0.1.

Value

An R stepfun object containing the sampled path of the process.
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See Also

rcfmc, rdiff, stepfun, gillespie

Examples

plot(imdeath(50))

LVdata Example simulated time courses from a stochastic Lotka–Volterra
model

Description

Collection of simulated time courses from a stochastic Lotka–Volterra model. LVperfect is direct
output from a Gillespie simulation. LVprey is the prey component. LVnoise10 has Gaussian noise
with standard deviation 10 added. LVnoise30 has Gaussian noise with standard deviation 30 added.
LVpreyNoise10 is the prey component with 10 SD noise added. LVnoise3010 has Gaussian noise
added. The noise added to the prey component has standard deviation 30 and the noise added to
the predator component has standard deviation 10. LVnoise10scale10 has Gaussian noise with
standard deviation 10 added, and is then rescaled by a factor of 10 to mimic a scenario of an
uncalibrated measurement scale. LVirregular is direct output from a Gillespie simulator, but on
an irregular time grid. LVirregularNoise10 is output on an irregular time grid with Gaussian noise
of standard deviation 10 added.

Usage

data(LVdata)

Format

All datasets beginning LVirregular are R matrices such as output by simTimes, and the rest are R
ts objects such as output by simTs.

mcmcSummary Summarise and plot tabular MCMC output

Description

This function summarises and plots tabular MCMC output such as that generated by the function
normgibbs.

Usage

mcmcSummary(mat, rows = 4, lag.max=100, bins=30, show = TRUE, plot = TRUE, truth = NULL)
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Arguments

mat Matrix of MCMC output, where the columns represent variables and the rows
represent iterations.

rows Number of variables to plot per page on the graphics device.

lag.max Maximum lag for the ACF plots.

bins Approximate number of bins to use for the histograms.

show If TRUE, will display numerical summaries on the R console.

plot If TRUE, will plot graphical summaries on the default graphics device.

truth Optional vector of "true values", one for each variable, for the case where an
algorithm is being tested on synthetic data for known parameters. The plots will
be annotated with a red line indicating the true value.

Value

An R summary object.

See Also

normgibbs, summary, acf

Examples

out=normgibbs(N=1000,n=15,a=3,b=11,cc=10,d=1/100,xbar=25,ssquared=20)
names(out)=c("mu","tau")
mcmcSummary(out,rows=2,bins=10,truth=c(25,1/20))

metrop Run a simple Metropolis sampler with standard normal target and uni-
form innovations

Description

This function runs a simple Metropolis sampler with standard normal target distribution and uniform
innovations.

Usage

metrop(n, alpha)

Arguments

n The number of iterations of the Metropolis sampler.

alpha The tuning parameter of the sampler. The innovations of the sampler are of the
form U(-alpha,alpha).
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Value

An R vector containing the output of the sampler.

See Also

normgibbs

Examples

normvec=metrop(1000,1)
op=par(mfrow=c(2,1))
plot(ts(normvec))
hist(normvec,20)
par(op)

metropolisHastings Run a Metropolis-Hastings MCMC algorithm for the parameters of a
Bayesian posterior distribution

Description

Run a Metropolis-Hastings MCMC algorithm for the parameters of a Bayesian posterior distribu-
tion. Note that the algorithm carries over the old likelihood from the previous iteration, making it
suitable for problems with expensive likelihoods, and also for "exact approximate" pseudo-marginal
or particle marginal MH algorithms.

Usage

metropolisHastings(init, logLik, rprop, dprop=function(new, old, ...){1},
dprior=function(x, ...){1}, iters=10000, thin=10,
verb=TRUE, debug=FALSE)

Arguments

init An parameter vector with which to initialise the MCMC algorithm.

logLik A function which takes a parameter (such as init) as its only required argument
and returns the log-likelihood of the data. Note that it is fine for this to return
the log of an unbiased estimate of the likelihood, in which case the algorithm
will be an "exact approximate" pseudo-marginal MH algorithm.

rprop A function which takes a parameter as its only required argument and returns a
single sample from a proposal distribution.

dprop A function which takes a new and old parameter as its first two required argu-
ments and returns the (log) density of the new value conditional on the old. It
should accept an optional parameter log, and must return the log-density when
log is TRUE. Defaults to a flat function which causes this term to drop out of
the acceptance probability. It is fine to use the default for _any_ _symmetric_
proposal, since the term will also drop out for any symmetric proposal.
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dprior A function which take a parameter as its only required argument and returns the
(log) density of the parameter value under the prior. It should accept an optional
parameter log, and must return the log-density when log is TRUE. Defaults to
a flat function which causes this term to drop out of the acceptance probabil-
ity. People often use a flat prior when they are trying to be "uninformative"
or "objective", but this is slightly naive. In particular, what is "flat" is clearly
dependent on the parametrisation of the model.

iters The number of MCMC iterations required (_after_ thinning).

thin The required thinning factor. eg. only store every thin iterations.

verb Boolean indicating whether some progress information should be printed to the
console. Defaults to TRUE.

debug Boolean indicating whether debugging information is required. Prints informa-
tion about each iteration to console, to, eg., debug a crashing sampler.

Value

A matrix with rows representing samples from the posterior distribution.

See Also

pfMLLik, StepGillespie, abcRun, simTs, stepLVc, metrop

Examples

## First simulate some synthetic data
data = rnorm(250,5,2)
## Now use MH to recover the parameters
llik = function(x) { sum(dnorm(data,x[1],x[2],log=TRUE)) }
prop = function(x) { rnorm(2,x,0.1) }
prior = function(x, log=TRUE) {

l = dnorm(x[1],0,100,log=TRUE) + dgamma(x[2],1,0.0001,log=TRUE)
if (log) l else exp(l)

}
out = metropolisHastings(c(mu=1,sig=1), llik, prop,

dprior=prior, verb=FALSE)
out = out[1000:10000,]
mcmcSummary(out, truth=c(5,2), rows=2, plot=FALSE)

mytable Simple example data frame

Description

Trivial example of a very small data frame. Used as part of the R tutorial.

Usage

data(mytable)
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Format

A very small example data frame.

normgibbs A simple Gibbs sampler for Bayesian inference for the mean and pre-
cision of a normal random sample

Description

This function runs a simple Gibbs sampler for the Bayesian posterior distribution of the mean and
precision given a normal random sample.

Usage

normgibbs(N, n, a, b, cc, d, xbar, ssquared)

Arguments

N The number of iterations of the Gibbs sampler.

n The sample size of the normal random sample.

a The shape parameter of the gamma prior on the sample precision.

b The scale parameter of the gamma prior on the sample precision.

cc The mean of the normal prior on the sample mean.

d The precision of the normal prior on the sample mean.

xbar The sample mean of the data. eg. mean(x) for a vector x.

ssquared The sample variance of the data. eg. var(x) for a vector x.

Value

An R matrix object containing the samples of the Gibbs sampler.

See Also

rcfmc, metrop, mcmcSummary

Examples

postmat=normgibbs(N=1100,n=15,a=3,b=11,cc=10,d=1/100,xbar=25,ssquared=20)
postmat=postmat[101:1100,]
op=par(mfrow=c(3,3))
plot(postmat)
plot(postmat,type="l")
plot.new()
plot(ts(postmat[,1]))
plot(ts(postmat[,2]))
plot(ts(sqrt(1/postmat[,2])))
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hist(postmat[,1],30)
hist(postmat[,2],30)
hist(sqrt(1/postmat[,2]),30)
par(op)

pfMLLik Create a function for computing the log of an unbiased estimate of
marginal likelihood of a time course data set

Description

Create a function for computing the log of an unbiased estimate of marginal likelihood of a time
course data set using a simple bootstrap particle filter. This version uses the "log-sum-exp trick" for
avoiding numerical underflow of weights. See pfMLLik1 for a version which doesn’t.

Usage

pfMLLik(n,simx0,t0,stepFun,dataLik,data)

Arguments

n An integer representing the number of particles to use in the particle filter.

simx0 A function with interface simx0(n,t0,...), where n is the number of rows of
a matrix and t0 is a time at which to simulate from an initial distribution for the
state of the particle filter. The return value should be a matrix whose rows are
random samples from this distribution. The function therefore represents a prior
distribution on the initial state of the Markov process.

t0 The time corresponding to the starting point of the Markov process. Can be no
bigger than the smallest observation time.

stepFun A function for advancing the state of the Markov process, such as returned by
StepGillespie.

dataLik A function with interface dataLik(x,t,y,log=TRUE,...), where x and t rep-
resent the true state and time of the process, and y is the observed data. The
return value should be the (log of the) likelihood of the observation. The func-
tion therefore represents the observation model.

data A timed data matrix representing the observations, such as produced by simTimes
or as.timedData.

Value

An R function with interface (...) which evaluates to the log of the particle filter’s unbiased
estimate of the marginal likelihood of the data.

See Also

pfMLLik1, StepGillespie, as.timedData, simTimes, stepLVc
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Examples

noiseSD=5
# first simulate some data
truth=simTs(c(x1=50,x2=100),0,20,2,stepLVc)
data=truth+rnorm(prod(dim(truth)),0,noiseSD)
data=as.timedData(data)
# measurement error model
dataLik <- function(x,t,y,log=TRUE,...)
{

ll=sum(dnorm(y,x,noiseSD,log=TRUE))
if (log)

return(ll)
else

return(exp(ll))
}
# now define a sampler for the prior on the initial state
simx0 <- function(N,t0,...)
{

mat=cbind(rpois(N,50),rpois(N,100))
colnames(mat)=c("x1","x2")
mat

}
mLLik=pfMLLik(1000,simx0,0,stepLVc,dataLik,data)
print(mLLik())
print(mLLik(th=c(th1 = 1, th2 = 0.005, th3 = 0.6)))
print(mLLik(th=c(th1 = 1, th2 = 0.005, th3 = 0.5)))

pfMLLik1 Create a function for computing the log of an unbiased estimate of
marginal likelihood of a time course data set

Description

Create a function for computing the log of an unbiased estimate of marginal likelihood of a time
course data set using a simple bootstrap particle filter. This version does not use the "log-sum-exp
trick" for avoiding numerical underflow. See pfMLLik for a version which does.

Usage

pfMLLik1(n,simx0,t0,stepFun,dataLik,data)

Arguments

n An integer representing the number of particles to use in the particle filter.

simx0 A function with interface simx0(n,t0,...), where n is the number of rows of
a matrix and t0 is a time at which to simulate from an initial distribution for the
state of the particle filter. The return value should be a matrix whose rows are
random samples from this distribution. The function therefore represents a prior
distribution on the initial state of the Markov process.
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t0 The time corresponding to the starting point of the Markov process. Can be no
bigger than the smallest observation time.

stepFun A function for advancing the state of the Markov process, such as returned by
StepGillespie.

dataLik A function with interface dataLik(x,t,y,log=TRUE,...), where x and t rep-
resent the true state and time of the process, and y is the observed data. The
return value should be the (log of the) likelihood of the observation. The func-
tion therefore represents the observation model.

data A timed data matrix representing the observations, such as produced by simTimes
or as.timedData.

Value

An R function with interface (...) which evaluates to the log of the particle filter’s unbiased
estimate of the marginal likelihood of the data.

See Also

pfMLLik, StepGillespie, as.timedData, simTimes, stepLVc

Examples

noiseSD=5
# first simulate some data
truth=simTs(c(x1=50,x2=100),0,20,2,stepLVc)
data=truth+rnorm(prod(dim(truth)),0,noiseSD)
data=as.timedData(data)
# measurement error model
dataLik <- function(x,t,y,log=TRUE,...)
{

ll=sum(dnorm(y,x,noiseSD,log=TRUE))
if (log)

return(ll)
else

return(exp(ll))
}
# now define a sampler for the prior on the initial state
simx0 <- function(N,t0,...)
{

mat=cbind(rpois(N,50),rpois(N,100))
colnames(mat)=c("x1","x2")
mat

}
mLLik=pfMLLik1(1000,simx0,0,stepLVc,dataLik,data)
print(mLLik())
print(mLLik(th=c(th1 = 1, th2 = 0.005, th3 = 0.6)))
print(mLLik(th=c(th1 = 1, th2 = 0.005, th3 = 0.5)))
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rcfmc Simulate a continuous time finite state space Markov chain

Description

This function simulates a single realisation from a continuous time Markov chain having a finite
state space based on a given transition rate matrix.

Usage

rcfmc(n,Q,pi0)

Arguments

n The number of states to be sampled from the Markov chain, including the initial
state, which will be sampled using pi0.

Q The transition rate matrix of the Markov chain, where each off-diagonal element
Q[i,j] represents the rate of transition from state i to state j. This matrix is
assumed to be square, having rows summing to zero.

pi0 A vector representing the probability distribution of the initial state of the Markov
chain. If this vector is of length r, then the transition matrix P is assumed to be
r x r. The elements of this vector are assumed to be non-negative and sum to
one, though in fact, they will be normalised by the sampling procedure.

Value

An R stepfun object containing the sampled path of the process.

See Also

rfmc, stepfun

Examples

plot(rcfmc(20,matrix(c(-0.5,0.5,1,-1),ncol=2,byrow=TRUE),c(1,0)))

rdiff Simulate a sample path from a univariate diffusion process

Description

This function simulates a single realisation from a time-homogeneous univariate diffusion process.

Usage

rdiff(afun, bfun, x0 = 0, t = 50, dt = 0.01, ...)
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Arguments

afun A scalar-valued function representing the infinitesimal mean (drift) of the diffu-
sion process. The first argument of afun is the current state of the process.

bfun A scalar-valued function representing the infinitesimal standard deviation of the
process. The first argument of bfun is the current state of the process.

x0 The initial state of the diffusion process.

t The length of the time interval over which the diffusion process is to be simu-
lated. Defaults to 50 time units.

dt The step size to be used both for the time step of the Euler integration method
and the recording interval for the output. It would probably be better to have
separate parameters for these two things (see StepSDE and simTs). Defaults to
0.01 time units.

... Additional arguments will be passed into afun and bfun.

Value

An R ts object containing the sampled path of the process.

See Also

rcfmc, ts, StepSDE, simTs

Examples

# simulate a diffusion approximation to an immigration-death process
# infinitesimal mean
afun<-function(x,lambda,mu)
{

lambda-mu*x
}
# infinitesimal standard deviation
bfun<-function(x,lambda,mu)
{

sqrt(lambda+mu*x)
}
# plot a sample path
plot(rdiff(afun,bfun,lambda=1,mu=0.1,t=30))

rfmc Simulate a finite state space Markov chain

Description

This function simulates a single realisation from a discrete time Markov chain having a finite state
space based on a given transition matrix.
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Usage

rfmc(n,P,pi0)

Arguments

n The number of states to be sampled from the Markov chain, including the initial
state, which will be sampled using pi0.

P The transition matrix of the Markov chain. This is assumed to be a stochastic
matrix, having non-negative elements and rows summing to one, though in fact,
the rows will in any case be normalised by the sampling procedure.

pi0 A vector representing the probability distribution of the initial state of the Markov
chain. If this vector is of length r, then the transition matrix P is assumed to be
r x r. The elements of this vector are assumed to be non-negative and sum to
one, though in fact, they will be normalised by the sampling procedure.

Value

An R ts object containing the sampled values from the Markov chain.

See Also

rcfmc, ts

Examples

# example for sampling a finite Markov chain
P = matrix(c(0.9,0.1,0.2,0.8),ncol=2,byrow=TRUE)
pi0 = c(0.5,0.5)
samplepath = rfmc(200,P,pi0)
plot(samplepath)
summary(samplepath)
table(samplepath)
table(samplepath)/length(samplepath) # empirical distribution
# now compute the exact stationary distribution...
e = eigen(t(P))$vectors[,1]
e/sum(e)

simpleEuler Simulate a sample path from an ODE model

Description

This function integrates an Ordinary Differential Equation (ODE) model using a simple first order
Euler method. The function is pedagogic and not intended for serious use. See the deSolve package
for better, more robust ODE solvers.
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Usage

simpleEuler(t=50, dt=0.001, fun, ic, ...)

Arguments

t The length of the time interval over which the ODE model is to be integrated.
Defaults to 50 time units.

dt The step size to be used both for the time step of the Euler integration method
and the recording interval for the output. It would probably be better to have
separate parameters for these two things (see StepEuler and simTs). Defaults
to 0.01 time units.

fun A vector-valued function representing the right hand side of the ODE model.
The first argument is a vector representing the current state of the model, x.
The second argument of fun is the current simulation time, t. In the case of
a homogeneous ODE model, this argument will be unused within the function.
The function may have additional arguments, representing model parameters.
The output of fun should be a vector of the same dimension as x.

ic The initial conditions for the ODE model. This should be a vector of the same
dimensions as the output from fun, and the second argument of fun.

... Additional arguments will be passed into fun.

Value

An R ts object containing the sampled path of the model.

See Also

rdiff, ts, StepEuler, simTs

Examples

# simple Lotka-Volterra example
lv <- function(x,t,k=c(k1=1,k2=0.1,k3=0.1))
{

with(as.list(c(x,k)),{
c( k1*x1 - k2*x1*x2 ,

k2*x1*x2 - k3*x2 )
})

}
plot(simpleEuler(t=100,fun=lv,ic=c(x1=4,x2=10)),plot.type="single",lty=1:2)

# now an example which instead uses deSolve...
require(deSolve)
times = seq(0,50,by=0.01)
k = c(k1=1,k2=0.1,k3=0.1)
lvlist = function(t,x,k)

list(lv(x,t,k))
plot(ode(y=c(x1=4,x2=10),times=times,func=lvlist,parms=k))
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simSample Simulate a many realisations of a model at a given fixed time in the
future given an initial time and state, using a function (closure) for
advancing the state of the model

Description

This function simulates many realisations of a model at a given fixed time in the future given an
initial time and state, using a function (closure) for advancing the state of the model , such as created
by StepGillespie or StepSDE.

Usage

simSample(n=100,x0,t0=0,deltat,stepFun,...)

Arguments

n The number of samples required. Defaults to 100.

x0 The initial state of the process at time t0.

t0 The initial time to be associated with the initial state x0. Defaults to 0.

deltat The amount of time in the future of t0 at which samples of the system state are
required.

stepFun A function (closure) for advancing the state of the process, such as produced by
StepGillespie or StepEulerSPN.

... Additional arguments will be passed to stepFun.

Value

An R matrix whose rows represent the simulated states of the process at time t0+deltat.

See Also

StepSDE, StepGillespie, simTimes, simTs

Examples

out3 = simSample(100,c(x1=50,x2=100),0,20,stepLVc)
hist(out3[,"x2"])
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simTimes Simulate a model at a specified set of times, using a function (closure)
for advancing the state of the model

Description

This function simulates a single realisation from a Markovian model and records the state at a
specified set of times using a function (closure) for advancing the state of the model, such as created
by StepGillespie or StepEulerSPN.

Usage

simTimes(x0,t0=0,times,stepFun,...)

Arguments

x0 The initial state of the process at time t0.

t0 The initial time to be associated with the initial state x0. Defaults to 0.

times A vector of times at which the state of the process is required. It is assumed that
the times are in increasing order, and that the first time is at least as big as t0.

stepFun A function (closure) for advancing the state of the process, such as produced by
StepGillespie or StepEulerSPN.

... Additional arguments will be passed to stepFun.

Value

An R matrix where each row represents the state of the process at one of the required times. The
row names contain the sampled times.

See Also

StepEulerSPN, StepGillespie, simTs, simSample, as.timedData, pfMLLik

Examples

# load the LV model
data(spnModels)
# create a stepping function
stepLV = StepGillespie(LV)
# simulate a realisation using simTimes
times = seq(0,100,by=0.1)
plot(ts(simTimes(c(x1=50,x2=100),0,times,stepLV),start=0,deltat=0.1),plot.type="single",lty=1:2)
# simulate a realisation at irregular times
times = c(0,10,20,50,100)
out2 = simTimes(c(x1=50,x2=100),0,times,stepLV)
print(out2)
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simTs Simulate a model on a regular grid of times, using a function (closure)
for advancing the state of the model

Description

This function simulates single realisation of a model on a regular grid of times using a function
(closure) for advancing the state of the model, such as created by StepGillespie or StepEulerSPN.

Usage

simTs(x0,t0=0,tt=100,dt=0.1,stepFun,...)

Arguments

x0 The initial state of the process at time t0.

t0 The initial time to be associated with the initial state x0. Defaults to 0.

tt The terminal time of the simulation.

dt The time step of the output. Note that this time step relates only to the recorded
output, and has no bearing on the accuracy of the simulation process.

stepFun A function (closure) for advancing the state of the process, such as produced by
StepGillespie or StepEulerSPN.

... Additional arguments will be passed to stepFun.

Value

An R ts object representing the simulated process.

See Also

StepEulerSPN, StepGillespie, StepSDE, simTimes, simSample, as.timedData

Examples

# load the LV model
data(spnModels)
# create a stepping function
stepLV = StepGillespie(LV)
# simulate a realisation of the process and plot it
out = simTs(c(x1=50,x2=100),0,100,0.1,stepLV)
plot(out)
plot(out,plot.type="single",lty=1:2)
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simTs1D Simulate a model on a regular grid of times, using a function (closure)
for advancing the state of the model

Description

This function simulates single realisation of a model on a 1D regular spatial grid and regular
grid of times using a function (closure) for advancing the state of the model, such as created by
StepGillespie1D.

Usage

simTs1D(x0,t0=0,tt=100,dt=0.1,stepFun,verb=FALSE,...)

Arguments

x0 The initial state of the process at time t0, a matrix with rows corresponding to
reacting species and columns corresponding to spatial location.

t0 The initial time to be associated with the initial state x0. Defaults to 0.

tt The terminal time of the simulation.

dt The time step of the output. Note that this time step relates only to the recorded
output, and has no bearing on the accuracy of the simulation process.

stepFun A function (closure) for advancing the state of the process, such as produced by
StepGillespie1D.

verb Output progress to the console (this function can be very slow).

... Additional arguments will be passed to stepFun.

Value

An R 3d array representing the simulated process. The dimensions are species, space, and time.

See Also

StepGillespie1D, simTs

Examples

data(spnModels)
N=20; T=30
x0=matrix(0,nrow=2,ncol=N)
rownames(x0)=c("x1","x2")
x0[,round(N/2)]=LV$M
stepLV1D = StepGillespie1D(LV,c(0.6,0.6))
xx = simTs1D(x0,0,T,0.2,stepLV1D,verb=TRUE)
op=par(mfrow=c(1,2))
image(xx[1,,],main="Prey",xlab="Space",ylab="Time")
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image(xx[2,,],main="Predator",xlab="Space",ylab="Time")
par(op)

simTs2D Simulate a model on a regular grid of times, using a function (closure)
for advancing the state of the model

Description

This function simulates single realisation of a model on a 2D regular spatial grid and regular
grid of times using a function (closure) for advancing the state of the model, such as created by
StepGillespie2D.

Usage

simTs2D(x0,t0=0,tt=100,dt=0.1,stepFun,verb=FALSE,...)

Arguments

x0 The initial state of the process at time t0, a 3d array with dimensions corre-
sponding to reacting species and two spatial dimensions.

t0 The initial time to be associated with the initial state x0. Defaults to 0.

tt The terminal time of the simulation.

dt The time step of the output. Note that this time step relates only to the recorded
output, and has no bearing on the accuracy of the simulation process.

stepFun A function (closure) for advancing the state of the process, such as produced by
StepGillespie2D.

verb Output progress to the console and graphics window (this function can be very
slow).

... Additional arguments will be passed to stepFun.

Value

An R 4d array representing the simulated process. The dimensions are species, 2 space, and time.

See Also

StepGillespie2D, simTs1D
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Examples

data(spnModels)
m=20; n=30; T=15
x0=array(0,c(2,m,n))
dimnames(x0)[[1]]=c("x1","x2")
x0[,round(m/2),round(n/2)]=LV$M
stepLV2D = StepGillespie2D(LV,c(0.6,0.6))
xx = simTs2D(x0,0,T,0.2,stepLV2D,verb=TRUE)
N = dim(xx)[4]
op=par(mfrow=c(1,2))
image(xx[1,,,N],main="Prey",xlab="Space",ylab="Time")
image(xx[2,,,N],main="Predator",xlab="Space",ylab="Time")
par(op)

spnModels Example SPN models

Description

Collection of example stochastic Petri net (SPN) models. Includes LV, a Lotka–Volterra model, ID,
an immigration–death process, BD, a birth–death process, SIR, a simple SIR model, SEIR, an SEIR
epidemic model, Dimer, a simple dimerisation kinetics model, and MM, a Michaelis–Menten enzyme
kinetic model.

Usage

data(spnModels)

Format

Each model is a list, with components Pre, Post, and h. Some models also include an initial state,
M. See gillespie and StepGillespie for further details, and examples of use.

StepCLE Create a function for advancing the state of an SPN by using a simple
Euler-Maruyama integration method for the approximating CLE

Description

This function creates a function for advancing the state of an SPN model using a simple Euler-
Maruyama integration method for the approximating chemical Langevin equation (CLE). The re-
sulting function (closure) can be used in conjunction with other functions (such as simTs) for sim-
ulating realisations of SPN models.

Usage

StepCLE(N,dt=0.01)
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Arguments

N An R list with named components representing a stochastic Petri net. Should
contain N$Pre, a matrix representing the LHS stoichiometries, N$Post, a matrix
representing the RHS stoichiometries, and N$h, a function representing the rates
of the reaction processes. N$h should have first argument x, a vector represent-
ing the current state of the system, and second argument t, a scalar representing
the current simulation time (in the typical time-homogeneous case, N$h will ig-
nore this argument). N$h may posses additional arguments, representing reaction
rates, for example. N does not need to contain an initial marking, N$M. N$M will
be ignored by most functions which use the resulting function closure.

dt Time step to be used by the Euler-Maruyama integration method. Defaults to
0.01.

Value

An R function which can be used to advance the state of the SPN model N by using an Euler-
Maruyama method on the approximating CLE with step size dt. The function closure has interface
function(x0,t0,deltat,...), where x0 and t0 represent the initial state and time, and deltat
represents the amount of time by which the process should be advanced. The function closure
returns a vector representing the simulated state of the system at the new time.

See Also

StepGillespie, StepEulerSPN, StepSDE, simTs, simSample

Examples

# load the LV model
data(spnModels)
# create a stepping function
stepLV = StepCLE(LV)
# step the function
print(stepLV(c(x1=50,x2=100),0,1))
# integrate the process and plot it
out = simTs(c(x1=50,x2=100),0,20,0.1,stepLV)
plot(out)
plot(out,plot.type="single",lty=1:2)

StepCLE1D Create a function for advancing the state of an SPN by using a simple
Euler-Maruyama discretisation of the CLE on a 1D regular grid

Description

This function creates a function for advancing the state of an SPN model using a simple Euler-
Maruyama discretisation of the CLE on a 1D regular grid. The resulting function (closure) can
be used in conjunction with other functions (such as simTs1D) for simulating realisations of SPN
models in space and time.
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Usage

StepCLE1D(N,d,dt=0.01)

Arguments

N An R list with named components representing a stochastic Petri net (SPN).
Should contain N$Pre, a matrix representing the LHS stoichiometries, N$Post,
a matrix representing the RHS stoichiometries, and N$h, a function representing
the rates of the reaction processes. N$h should have first argument x, a vector
representing the current state of the system, and second argument t, a scalar
representing the current simulation time (in the typical time-homogeneous case,
N$h will ignore this argument). N$h may possess additional arguments, repre-
senting reaction rates, for example. N does not need to contain an initial mark-
ing, N$M. N$M will be ignored by most functions which use the resulting function
closure.

d A vector of diffusion coefficients - one coefficient for each reacting species, in
order. The coefficient is the reaction rate for a reaction for a molecule moving
into an adjacent compartment. The hazard for a given molecule leaving the
compartment is therefore twice this value (as it can leave to the left or the right).

dt Time step for the Euler-Maruyama discretisation.

Value

An R function which can be used to advance the state of the SPN model N by using a simple
Euler-Maruyama algorithm. The function closure has interface function(x0,t0,deltat,...),
where x0 is a matrix with rows corresponding to species and columns corresponding to voxels,
representing the initial condition, t0 represent the initial state and time, and deltat represents the
amount of time by which the process should be advanced. The function closure returns a matrix
representing the simulated state of the system at the new time.

See Also

StepGillespie1D,StepCLE, simTs1D, StepCLE2D

Examples

N=200
T=40
data(spnModels)
x0=matrix(0,nrow=2,ncol=N)
rownames(x0)=c("x1","x2")
x0[,round(N/2)]=LV$M
stepLV1D = StepCLE1D(LV,c(0.6,0.6),dt=0.05)
xx = simTs1D(x0,0,T,0.2,stepLV1D)
op=par(mfrow=c(1,2))
image(xx[1,,],main="Prey",xlab="Space",ylab="Time")
image(xx[2,,],main="Predator",xlab="Space",ylab="Time")
par(op)
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StepCLE2D Create a function for advancing the state of an SPN by using a simple
Euler-Maruyama discretisation of the CLE on a 2D regular grid

Description

This function creates a function for advancing the state of an SPN model using a simple Euler-
Maruyama discretisation of the CLE on a 2D regular grid. The resulting function (closure) can
be used in conjunction with other functions (such as simTs2D) for simulating realisations of SPN
models in space and time.

Usage

StepCLE2D(N,d,dt=0.01)

Arguments

N An R list with named components representing a stochastic Petri net (SPN).
Should contain N$Pre, a matrix representing the LHS stoichiometries, N$Post,
a matrix representing the RHS stoichiometries, and N$h, a function representing
the rates of the reaction processes. N$h should have first argument x, a vector
representing the current state of the system, and second argument t, a scalar
representing the current simulation time (in the typical time-homogeneous case,
N$h will ignore this argument). N$h may possess additional arguments, repre-
senting reaction rates, for example. N does not need to contain an initial mark-
ing, N$M. N$M will be ignored by most functions which use the resulting function
closure.

d A vector of diffusion coefficients - one coefficient for each reacting species, in
order. The coefficient is the reaction rate for a reaction for a molecule moving
into an adjacent compartment. The hazard for a given molecule leaving the com-
partment is therefore four times this value (as it can leave in one of 4 directions).

dt Time step for the Euler-Maruyama discretisation.

Value

An R function which can be used to advance the state of the SPN model N by using a simple
Euler-Maruyama algorithm. The function closure has interface function(x0,t0,deltat,...),
where x0 is a 3D array with rows corresponding to species and columns corresponding to voxels,
representing the initial condition (with dimensions species, x, and y), t0 represent the initial state
and time, and deltat represents the amount of time by which the process should be advanced. The
function closure returns a matrix representing the simulated state of the system at the new time.

See Also

StepGillespie2D,StepCLE, simTs1D, StepCLE1D
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Examples

m=150
n=100
T=15
data(spnModels)
x0=array(0,c(2,m,n))
dimnames(x0)[[1]]=c("x1","x2")
x0[,round(m/2),round(n/2)]=LV$M
stepLV2D = StepCLE2D(LV,c(0.6,0.6),dt=0.05)
xx = simTs2D(x0,0,T,0.5,stepLV2D,verb=TRUE)
N = dim(xx)[4]
op=par(mfrow=c(1,2))
image(xx[1,,,N],main="Prey",xlab="Space",ylab="Time")
image(xx[2,,,N],main="Predator",xlab="Space",ylab="Time")
par(op)

StepEuler Create a function for advancing the state of an ODE model by using a
simple Euler integration method

Description

This function creates a function for advancing the state of an ODE model using a simple Euler
integration method. The resulting function (closure) can be used in conjunction with other func-
tions (such as simTs) for simulating realisations of ODE models. This function is intended to be
pedagogic. See StepODE for a more accurate integration function.

Usage

StepEuler(RHSfun,dt=0.01)

Arguments

RHSfun A function representing the RHS of the ODE model. RHSfun should have pro-
totype RHSfun(x,t,...), with x representing current system state and t repre-
senting current system time. The value of the function should be a vector of the
same dimension as x, representing the infinitesimal change in state.

dt Time step to be used by the simple Euler integration method. Defaults to 0.01.

Value

An R function which can be used to advance the state of the ODE model RHSfun by using an
Euler method with step size dt. The function closure has interface function(x0,t0,deltat,...),
where t0 and x0 represent the initial time and state, and deltat represents the amount of time
by which the process should be advanced. The function closure returns a vector representing the
simulated state of the system at the new time.
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See Also

StepEulerSPN, StepODE, simTs, simSample

Examples

# Build a RHS for the Lotka-Volterra system
LVrhs <- function(x,t,th=c(c1=1,c2=0.005,c3=0.6))
{

with(as.list(c(x,th)),{
c( c1*x1 - c2*x1*x2 ,

c2*x1*x2 - c3*x2 )
})

}
# create a stepping function
stepLV = StepEuler(LVrhs)
# step the function
print(stepLV(c(x1=50,x2=100),0,1))
# integrate the process and plot it
out = simTs(c(x1=50,x2=100),0,20,0.1,stepLV)
plot(out,plot.type="single",lty=1:2)

StepEulerSPN Create a function for advancing the state of an SPN by using a simple
continuous deterministic Euler integration method

Description

This function creates a function for advancing the state of an SPN model using a simple continuous
deterministic Euler integration method. The resulting function (closure) can be used in conjunction
with other functions (such as simTs) for simulating realisations of SPN models.

Usage

StepEulerSPN(N,dt=0.01)

Arguments

N An R list with named components representing a stochastic Petri net. Should
contain N$Pre, a matrix representing the LHS stoichiometries, N$Post, a matrix
representing the RHS stoichiometries, and N$h, a function representing the rates
of the reaction processes. N$h should have first argument x, a vector representing
the current state of the system, and second argument t, a scalar representing the
current simulation time (in the typical time-homogeneous case, N$h will ignore
this argument). N$h may possess additional arguments, representing reaction
rates, for example. N does not need to contain an initial marking, N$M. N$M will
be ignored by most functions which use the resulting function closure.

dt Time step to be used by the simple Euler integration method. Defaults to 0.01.
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Value

An R function which can be used to advance the state of the SPN model N by using an Euler method
with step size dt. The function closure has interface function(x0,t0,deltat,...), where x0
and t0 represent the initial state and time, and deltat represents the amount of time by which the
process should be advanced. The function closure returns a vector representing the simulated state
of the system at the new time.

See Also

StepGillespie, StepODE, StepCLE, simpleEuler, simTs, simSample

Examples

# load the LV model
data(spnModels)
# create a stepping function
stepLV = StepEulerSPN(LV)
# step the function
print(stepLV(c(x1=50,x2=100),0,1))
# integrate the process and plot it
out = simTs(c(x1=50,x2=100),0,100,0.1,stepLV)
plot(out)
plot(out,plot.type="single",lty=1:2)

StepFRM Create a function for advancing the state of an SPN by using Gille-
spie’s first reaction method

Description

This function creates a function for advancing the state of an SPN model using Gillespie’s first
reaction method. The resulting function (closure) can be used in conjunction with other functions
(such as simTs) for simulating realisations of SPN models.

Usage

StepFRM(N)

Arguments

N An R list with named components representing a stochastic Petri net. Should
contain N$Pre, a matrix representing the LHS stoichiometries, N$Post, a matrix
representing the RHS stoichiometries, and N$h, a function representing the rates
of the reaction processes. N$h should have first argument x, a vector representing
the current state of the system, and second argument t, a scalar representing the
current simulation time (in the typical time-homogeneous case, N$h will ignore
this argument). N$h may possess additional arguments, representing reaction
rates, for example. N does not need to contain an initial marking, N$M. N$M will
be ignored by most functions which use the resulting function closure.
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Value

An R function which can be used to advance the state of the SPN model N by using Gillespie’s
first reaction method. The function closure has interface function(x0,t0,deltat,...), where
x0 and t0 represent the initial state and time, and deltat represents the amount of time by which
the process should be advanced. The function closure returns a vector representing the simulated
state of the system at the new time.

See Also

StepEulerSPN, StepGillespie, simTs, simSample

Examples

# load the LV model
data(spnModels)
# create a stepping function
stepLV = StepFRM(LV)
# step the function
print(stepLV(c(x1=50,x2=100),0,1))
# simulate a realisation of the process and plot it
out = simTs(c(x1=50,x2=100),0,100,0.1,stepLV)
plot(out,plot.type="single",lty=1:2)

StepGillespie Create a function for advancing the state of an SPN by using the Gille-
spie algorithm

Description

This function creates a function for advancing the state of an SPN model using the Gillespie al-
gorithm. The resulting function (closure) can be used in conjunction with other functions (such as
simTs) for simulating realisations of SPN models.

Usage

StepGillespie(N)

Arguments

N An R list with named components representing a stochastic Petri net (SPN).
Should contain N$Pre, a matrix representing the LHS stoichiometries, N$Post,
a matrix representing the RHS stoichiometries, and N$h, a function representing
the rates of the reaction processes. N$h should have first argument x, a vector
representing the current state of the system, and second argument t, a scalar
representing the current simulation time (in the typical time-homogeneous case,
N$h will ignore this argument). N$h may possess additional arguments, repre-
senting reaction rates, for example. N does not need to contain an initial mark-
ing, N$M. N$M will be ignored by most functions which use the resulting function
closure.
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Value

An R function which can be used to advance the state of the SPN model N by using the Gillespie
algorithm. The function closure has interface function(x0,t0,deltat,...), where x0 and t0
represent the initial state and time, and deltat represents the amount of time by which the process
should be advanced. The function closure returns a vector representing the simulated state of the
system at the new time.

See Also

StepEulerSPN, StepGillespie1D, simTs, simTimes, simSample, StepFRM, StepPTS, StepCLE

Examples

# load up the Lotka-Volterra (LV) model
data(spnModels)
LV
# create a stepping function
stepLV = StepGillespie(LV)
# step the function
print(stepLV(c(x1=50,x2=100),0,1))
# simulate a realisation of the process and plot it
out = simTs(c(x1=50,x2=100),0,100,0.1,stepLV)
plot(out)
plot(out,plot.type="single",lty=1:2)
# simulate a realisation using simTimes
times = seq(0,100,by=0.1)
plot(ts(simTimes(c(x1=50,x2=100),0,times,stepLV),start=0,deltat=0.1),plot.type="single",lty=1:2)
# simulate a realisation at irregular times
times = c(0,10,20,50,100)
out2 = simTimes(c(x1=50,x2=100),0,times,stepLV)
print(out2)

StepGillespie1D Create a function for advancing the state of an SPN by using the Gille-
spie algorithm on a 1D regular grid

Description

This function creates a function for advancing the state of an SPN model using the Gillespie al-
gorithm. The resulting function (closure) can be used in conjunction with other functions (such as
simTs1D) for simulating realisations of SPN models in space and time.

Usage

StepGillespie1D(N,d)
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Arguments

N An R list with named components representing a stochastic Petri net (SPN).
Should contain N$Pre, a matrix representing the LHS stoichiometries, N$Post,
a matrix representing the RHS stoichiometries, and N$h, a function representing
the rates of the reaction processes. N$h should have first argument x, a vector
representing the current state of the system, and second argument t, a scalar
representing the current simulation time (in the typical time-homogeneous case,
N$h will ignore this argument). N$h may possess additional arguments, repre-
senting reaction rates, for example. N does not need to contain an initial mark-
ing, N$M. N$M will be ignored by most functions which use the resulting function
closure.

d A vector of diffusion coefficients - one coefficient for each reacting species, in
order. The coefficient is the reaction rate for a reaction for a molecule moving
into an adjacent compartment. The hazard for a given molecule leaving the
compartment is therefore twice this value (as it can leave to the left or the right).

Value

An R function which can be used to advance the state of the SPN model N by using the Gillespie
algorithm. The function closure has interface function(x0,t0,deltat,...), where x0 is a matrix
with rows corresponding to species and columns corresponding to voxels, representing the initial
condition, t0 represent the initial state and time, and deltat represents the amount of time by which
the process should be advanced. The function closure returns a matrix representing the simulated
state of the system at the new time.

See Also

StepGillespie, simTs1D, StepGillespie2D

Examples

data(spnModels)
N=20; T=30
x0=matrix(0,nrow=2,ncol=N)
rownames(x0)=c("x1","x2")
x0[,round(N/2)]=LV$M
stepLV1D = StepGillespie1D(LV,c(0.6,0.6))
xx = simTs1D(x0,0,T,0.2,stepLV1D,verb=TRUE)
op=par(mfrow=c(1,2))
image(xx[1,,],main="Prey",xlab="Space",ylab="Time")
image(xx[2,,],main="Predator",xlab="Space",ylab="Time")
par(op)
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StepGillespie2D Create a function for advancing the state of an SPN by using the Gille-
spie algorithm on a 2D regular grid

Description

This function creates a function for advancing the state of an SPN model using the Gillespie al-
gorithm. The resulting function (closure) can be used in conjunction with other functions (such as
simTs2D) for simulating realisations of SPN models in space and time.

Usage

StepGillespie2D(N,d)

Arguments

N An R list with named components representing a stochastic Petri net (SPN).
Should contain N$Pre, a matrix representing the LHS stoichiometries, N$Post,
a matrix representing the RHS stoichiometries, and N$h, a function representing
the rates of the reaction processes. N$h should have first argument x, a vector
representing the current state of the system, and second argument t, a scalar
representing the current simulation time (in the typical time-homogeneous case,
N$h will ignore this argument). N$h may possess additional arguments, repre-
senting reaction rates, for example. N does not need to contain an initial mark-
ing, N$M. N$M will be ignored by most functions which use the resulting function
closure.

d A vector of diffusion coefficients - one coefficient for each reacting species, in
order. The coefficient is the reaction rate for a reaction for a molecule moving
into an adjacent compartment. The hazard for a given molecule leaving the com-
partment is therefore four times this value (as it can leave in one of 4 directions).

Value

An R function which can be used to advance the state of the SPN model N by using the Gillespie
algorithm. The function closure has interface function(x0,t0,deltat,...), where x0 is a 3d
array with dimensions corresponding to species followed by two spatial dimensions, representing
the initial condition, t0 represent the initial state and time, and deltat represents the amount of
time by which the process should be advanced. The function closure returns an array representing
the simulated state of the system at the new time.

See Also

StepGillespie, simTs2D, StepGillespie1D
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Examples

data(spnModels)
m=20; n=30; T=10
x0=array(0,c(2,m,n))
dimnames(x0)[[1]]=c("x1","x2")
x0[,round(m/2),round(n/2)]=LV$M
stepLV2D = StepGillespie2D(LV,c(0.6,0.6))
xx = simTs2D(x0,0,T,0.2,stepLV2D,verb=TRUE)
N = dim(xx)[4]
op=par(mfrow=c(1,2))
image(xx[1,,,N],main="Prey",xlab="Space",ylab="Time")
image(xx[2,,,N],main="Predator",xlab="Space",ylab="Time")
par(op)

stepLVc A function for advancing the state of a Lotka-Volterra model by using
the Gillespie algorithm

Description

A function for advancing the state of a Lotka-Volterra model by calling some C code implementing
the Gillespie algorithm. The function can be used in conjunction with other functions (such as
simTs) for simulating realisations of Lotka-Volterra models. Should be functionally identical to the
function obtained by data(spnModels), stepLV=StepGillespie(LV), but much faster.

Usage

stepLVc(x0,t0,deltat,th=c(1,0.005,0.6))

Arguments

x0 A vector representing the state of the system at the initial time, t0.

t0 The time corresponding to the initial state, x0.

deltat The time in advance of the initial time at which the new state is required.

th A vector of length 3 representing the rate constants associated with the 3 LV
reactions. Defaults to c(1,0.005,0.6).

Value

A 2-vector representing the new state of the LV system.

See Also

StepGillespie, spnModels, simTs, simSample
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Examples

# load the LV model
data(spnModels)
# create a stepping function
stepLV = StepGillespie(LV)
# step the function
print(stepLV(c(x1=50,x2=100),0,1))
# simulate a realisation of the process and plot it
out = simTs(c(x1=50,x2=100),0,100,0.1,stepLV)
plot(out)
# now use "stepLVc" instead...
out = simTs(c(x1=50,x2=100),0,100,0.1,stepLVc)
plot(out)

StepODE Create a function for advancing the state of an ODE model by using
the deSolve package

Description

This function creates a function for advancing the state of an ODE model using an integration
method from the deSolve package. The resulting function (closure) can be used in conjunction
with other functions (such as simTs) for simulating realisations of ODE models. This function is
used similarly to StepEuler, but StepODE should be more accurate and efficient.

Usage

StepODE(RHSfun)

Arguments

RHSfun A function representing the RHS of the ODE model. RHSfun should have pro-
totype RHSfun(x,t,parms,...), with t representing current system time, x
representing current system state and parms representing the model parameters.
The value of the function should be a vector of the same dimension as x, repre-
senting the infinitesimal change in state.

Value

An R function which can be used to advance the state of the ODE model RHSfun by using an
efficient ODE solver. The function closure has interface function(x0,t0,deltat,parms,...),
where t0 and x0 represent the initial time and state, and deltat represents the amount of time
by which the process should be advanced. The function closure returns a vector representing the
simulated state of the system at the new time.

See Also

StepEulerSPN, StepEuler, simTs, ode
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Examples

# Build a RHS for the Lotka-Volterra system
LVrhs <- function(x,t,parms)
{

with(as.list(c(x,parms)),{
c( c1*x1 - c2*x1*x2 ,

c2*x1*x2 - c3*x2 )
})

}
# create a stepping function
stepLV = StepODE(LVrhs)
# step the function
print(stepLV(c(x1=50,x2=100),0,1,parms=c(c1=1,c2=0.005,c3=0.6)))
# integrate the process and plot it
out = simTs(c(x1=50,x2=100),0,50,0.1,stepLV,parms=c(c1=1,c2=0.005,c3=0.6))
plot(out,plot.type="single",lty=1:2)

StepPTS Create a function for advancing the state of an SPN by using a simple
approximate Poisson time stepping method

Description

This function creates a function for advancing the state of an SPN model using a simple approximate
Poisson time stepping method. The resulting function (closure) can be used in conjunction with
other functions (such as simTs) for simulating realisations of SPN models.

Usage

StepPTS(N,dt=0.01)

Arguments

N An R list with named components representing a stochastic Petri net. Should
contain N$Pre, a matrix representing the LHS stoichiometries, N$Post, a matrix
representing the RHS stoichiometries, and N$h, a function representing the rates
of the reaction processes. N$h should have first argument x, a vector representing
the current state of the system, second argument t, a scalar representing the cur-
rent simulation time (in the typical time-homogeneous case, N$h will ignore this
argument). N$h may posses additional arguments, representing reaction rates,
for example. N does not need to contain an initial marking, N$M. N$M will be
ignored by most functions which use the resulting function closure.

dt Time step to be used by the Poisson time stepping integration method. Defaults
to 0.01.
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Value

An R function which can be used to advance the state of the SPN model N by using a Poisson time
stepping method with step size dt. The function closure has interface function(x0,t0,deltat,...),
where x0 and t0 represent the initial state and time, and deltat represents the amount of time by
which the process should be advanced. The function closure returns a vector representing the sim-
ulated state of the system at the new time.

See Also

StepGillespie, StepCLE, simTs, simSample

Examples

# load up the LV model
data(spnModels)
# create a stepping function
stepLV=StepPTS(LV)
# step the function
print(stepLV(c(x1=50,x2=100),0,1))
# integrate the process and plot it
out = simTs(c(x1=50,x2=100),0,20,0.1,stepLV)
plot(out)
plot(out,plot.type="single",lty=1:2)

StepSDE Create a function for advancing the state of an SDE model by using a
simple Euler-Maruyama integration method

Description

This function creates a function for advancing the state of an SDE model using a simple Euler-
Maruyama integration method. The resulting function (closure) can be used in conjunction with
other functions (such as simTs) for simulating realisations of SDE models.

Usage

StepSDE(drift,diffusion,dt=0.01)

Arguments

drift A function representing the drift vector of the SDE model (corresponding roughly
to the RHS of an ODE model). drift should have prototype drift(x,t,...),
with x representing current system state and t representing current system time.
The value of the function should be a vector of the same dimension as x, repre-
senting the infinitesimal mean of the Ito SDE.
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diffusion A function representing the diffusion matrix of the SDE model (the square
root of the infinitesimal variance matrix). diffusion should have prototype
diffusion(x,t,...), with x representing current system state and t repre-
senting current system time. The value of the function should be a square matrix
with both dimensions the same as the length of x.

dt Time step to be used by the simple Euler-Maruyama integration method. De-
faults to 0.01.

Value

An R function which can be used to advance the state of the SDE model with given drift vector
and diffusion matrix, by using an Euler-Maruyama method with step size dt. The function closure
has interface function(x0,t0,deltat,...), where x0 and t0 represent the initial state and time,
and deltat represents the amount of time by which the process should be advanced. The function
closure returns a vector representing the simulated state of the system at the new time.

See Also

StepEuler, StepCLE, simTs, simSample

Examples

# Immigration-death diffusion approx with death rate a CIR process
myDrift <- function(x,t,th=c(lambda=1,alpha=1,mu=0.1,sigma=0.1))

{
with(as.list(c(x,th)),{

c( lambda - x*y ,
alpha*(mu-y) )

})
}

myDiffusion <- function(x,t,th=c(lambda=1,alpha=1,mu=0.1,sigma=0.1))
{

with(as.list(c(x,th)),{
matrix(c( sqrt(lambda + x*y) , 0,

0, sigma*sqrt(y) ),ncol=2,nrow=2,byrow=TRUE)
})

}
# create a stepping function
stepProc = StepSDE(myDrift,myDiffusion)
# integrate the process and plot it
out = simTs(c(x=5,y=0.1),0,20,0.1,stepProc)
plot(out)
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